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About Mini-Workshop

General topic
— “Polarized Beams: A Brief History and Future Prospect” by Yaroslav Derbenev (JLab)

Machine Overview
— “Introduction to CEPC “ by Jie Gao (IHEP)

e+e- colliders at low to medium energy
— “BINP's Polarization Proposal for Tau-Charm Factory” by Ivan Koop (BINP)

e+e- collider at energy frontier
— “Resonant Depolarization at Zand W Beam Energy” by Ivan Koop (BINP)
— “Polarized Electron and Positron Beams in CEPC” by Zhe Duan (IHEP)
— “Preliminary Studies of Beam Polarization in CEPC” by Wenhao Xia (IHEP)

e-p and e-A colliders
— “Beam Polarization in Future Colliders (eRHIC and FCC-ee)” by Eliana Gianfelice-Wendt (FNAL)
— “JLEIC Electron Beam Polarization” by Yuhong Zhang (JLab)
— “Spin Matching in Electron (Positron) Rings” by Vadim Ptitsyn (BNL)

Electron/positron sources
— “ILC Polarized Electron and Positron Sources” by Kaoru Yokoya (KEK)

Polarimetry
— “Overview of Electron Polarimetry” by David Gaskell (JIab)
— “Design of the Beam Polarimeter for FCC-ee” by Nikolai Muchnoi (BINP)

Code development and simulations
— “Code Development and Simulation Studies of Polarized Beams” by Francois Meot (BNL)
— “Re-evaluation of Spin-Orbit Dynamics of Polarized e+e- Beams in High Energy Circular Accelerators
and Storage Rings: Bloch Equation Approach” by Klaus Heinemann (Univ. of New Mexico)



“Polarized Beams: A Brief History & Future Prospects” by Ya. Derbenev (JLab)

I. Foundations and problems
«  Polarization sources V. Figure 8 synchrotron
* Thomas — BMT spin equations VI. Polarized EIC
+  Spin in conventional rings .
+ Compensated spin rotators
* Resonance depolarization

* Crossing the spin resonances ]
) ) * Polarized LHC?
+  ZGS + AGS proton spin acceleration . . .
o T + Polarization ideas for CEPC:
« BST radiative polarization
i o Snakes
* Orlov’ depolarization .
i Bending snakes
IL. Polarization canonical theory

III. Siberian Snakes Flipping spin rotators
* SSidea and demonstration .

Achromatic snakes

* SS techniques Many snakes

« SS utilization and success in RHIC
«  Multiple SS for SSC

Spin-compensated quads

“Siberian Snakes”: making Spin Echo in racetracks...

Cancellafion idea of spin global precession over the racetrack orbit:
instead of reversing the arcs, let us make reverse of spin...!
by inserting local spin flip about a horizontal axis
Topological compensation of spin precession over arcs

Spin echo effect is obviously v
extendable to any w-—
rotator around an arbitrary v

horizontal axis m 4

T — rotator

Solenoid as w — rotator

Spin Techniques 1

Twisted Spin Synchrotron: Spin Echo
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IV. Spin-compensated quads

Fixed orbit e-spin rotator and snake

VII. Future polarized beams

Polarization ideas for 75 TeV PPC

Universal Spin Rotator on

electrons

solenoids and constant bends <
ol
; - T
S & =44 &2y g8

Thoughts on Beam Polarization delivery in CEPC

Option I: Use Polarized e-gun (electrons only...)
+ Stacking and accelerating for njection to collider ring

» Acceleration and maintenance of PEB in the Collider Ring

Option I1 : BST polarization in the Collider Ring

(at injection energy...or in booster ring...?
» Takes Polarizing Wigglers to facilitate BST
* Luminosity run at wigglers off

Spin Rotators for CEPC.1

Fixed orbit SR on dipoles and solenoids for CEPC

|—axz ‘{sz =1)

SEin Rotators for CEPC. 2.

Achromatic Rotator on transverse fields
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“Polarized Beams: A Brief History and Future Prospects” by Ya. Derbenev

Thinking about Future 75 TeV Polarized Proton Beams. 1. Thinking about Future 75 TeV Polarized Proton Beams. 2

* Figure 8 Booster in energy range below 30 GeV

Option II: Spin-compensated quadrupoles

* Snakes for the succeeding boosters ” SR b
Options for the Collider Rings % 5 4TM I%
Option I Many SS (@
 Sufficient large chain of SS to suppress depolarizing
impact of the superperiodic misalignment harmonics AP
. . cb 10.8TM C'b
« Spin tune %
« Compensation of tune spread associated with beam .
emittance * Two SS then will be enough to eliminate spin resonance

 Spin response function to suppress the beam-beam
depolarization .

Thinking about Future 75 TeV Polarized Proton Beams. 1.

Preconclusion

» At this stage, our anticipation of successtul design for
future polarized beams 1s close to 100% optimusm.

crossing during the acceleration and stay away of the
resonances through the luminosity run
Think about spin flipping (if inquired); ideas on table..




“BINP’s Polarization Proposal for Tau-Charm Factory” by I. Koop

Outline Polarization scheme with 3 snakes (arc=12C

+2 damping wigglers in the arc’s middle )

* BINP’s c-tau complex with the longitudinally
polarized electrons.

Polarized

y Conclusion /\\
postrn nc 1 snake provides up to 80% - 90% of the longitudinal polarization
at E < 1.5 GeV. This option can be considered as a first stage for /fdamp.-ng

polarization program. wiggler2

3 snakes provide sufficiently high polarization degree, about 75-

o K 90% in the energy range E < 2.5 GeV and only about 50% at 3 GeV.
0 @ | Currently this is the main scenario because it fulfils to the main
= o~ I physics program requirements.
-205— '[\{?1 -
1 2
I ”;gtgf . 5 snakes option requires different optimization of a ring layoutto  J .
A place snakes uniformly in terms of the velocity circulation angle.
o— Now not under consideration. = 3 nwies

To decouple x,y-motions

7 o Option with two 90" spin rotators is not as universal as multiple
-;' %= 2y s snakes version, but its price is much lower. We shall make final
choice after discussions with the detector community.

®/2
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“Resonant Depolarization at Zand W Beam Energy” by |. Koop

Outline e Beam emittances in CEPC/FCCee are so small that all
. _ _ _ resonances with betatron frequencies are suppressed
* Resonance Depolarization studies by spin tracking

and thelr mfluence on the spin motlon is negllglble

* Spi jnal

Conclusion

Spin tracking of a motion of a single particle reveals the dependence of the
spectrum line width from the synchrotron tune and other beam parameters.

= Solf

* Pro

Spi
This width becomes very large for chosen synchrotron tune Qs=0.05 at W and the
Res§  standard RD procedure becomes not applicable,

1600.
1400.

=ofls  The discussed above new RD procedure (by steps) works well evenin cases

1000.

«of  when a width of the spin resonance became very large. That is just the case with

4 600.

wof Q5=0,05. 5till the accuracy of a method needs to be studied further.

200.

Second order terms in orbital motion also contribute to the line width [I.Koop,
Yu.Shatunov, in proc. EPAC 1988, Rome, p.738-739). See also the talk on

350 systematic errors from A.Bogomyagkov: _turnurn:rw WG?

=

Equilibrium polarization

Spin tune near the mteger, m=(1-182)/Qs



Polarized electron and positron beams at CEPC by Zhe Duan

Outline Prospects and challenges

* Motivation * Energy calibration w/ resonant depolarization

* Prospect and challenges * A detailed time diagram of operation with
* Equilibrium beam polarization simulations asymmetric wigglers

e Complexities in energy calibration @ W

. Ene Discussions Lt 1Ps

* “Cag » The simulation results support the theory of uncorrelated regime
at ultra-high beam energies, CEPC@120 GeV is expected to be
. v Wwithin this regime.

. ol * This study shows there are some open questions to be answered

. theoretically, Klaus’s talk introduced the status of their
investigation, and more progress is expected. o
Appen . UppuU I C 3 Dld ALIU C

« stepsize is ay=0.1
+ gz is the synchrotron tune.

A8.1: Introduction S fmzlf,ﬁi,ﬂ;j;: )

One of the future experiments at CEPC can be a precise measurement of the mas:
the Z using resonant depolarization [1]. To achieve this goal one needs a method
obtaining polarized electron and positron beams. In this appendix we consider the m:
issues for obtaining the radiative self-polarization of particles with the current CE
design parameters at 45 GeVand at 80 GeV.

Polarization(%

40t

20+

S. Nikitin
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Beam P ' e RHIC

Summary for FCCee

e Due to the demanding IR optics design and the machine size, establishing a closed

orbit and keeping a stable machine look challenging.
cMg properly designed

e Resonant de-polarizatio . ] . .
— Even for an extremely well corrected orbit polarization may reserve surprises, WBh alternating signs.

(< 100 keV) at 45 and
It relies on the relations however means have been found for meeting polarization requirements at 45

e Beam polarization is obt§r and 80 GeV beam energy.

The effect is in practice

beam energy because | ® The long 7, at 45 GeV and short lifetime in collision call for a strategical plan for fr-Katkov-Strakhovent

— of the build-up rate polarization measurement (see M.Koratzinos IPAC15 contribution):
— it is jeopardized by

which affects the readl. — Use of non-colliding bunches.

8 moC

o 10% beam polarization — Wigglers turned on for the time needed for polarizing the non-colliding bunches a
. . - - . w o
bration. while the machine is filled. |puwl? }

To®  _ Exhausted pilote bunches must be immediately replaced (top-up injection needed

Accurate simulations are necedib anyway) so that they get naturally polarized.

misa|ignments when direct evaation ot 1lerhenev-K exnression 1s nrohihitive

o« MADX used for simulatinl. ® 1t must be proven that the required calibration precision can be reached. This |mp||es*1| ""»,‘rﬁ .
- - . . . T
e SITROS (by J. Kewish) us a careful review of all possible biases (see Amsterdam FCC week contributions by | l\'“ Wi
; . [ 1]
— Tracking code with 2t A.Bogomyagkov and T.Tydecks): J
— Used for HERA-e in th{ . . . . o , fq?v )‘2”5 ’oﬁ? 2,
ke contains SITF (fully ol Experiment solenoids, vertical closed orbit and electric fields break the v, = ay°§ .
spin motion. relationship. Bnic bumps
* Useful tool for prelingh. ot o 0o
ing. Sawtooth effect. 02014020,
x Computation of pols . o o RS —
useful for disentanglifl Difference between the energy of non-colliding and colliding bunches. s
Fity
More recently Bmad by D. S Difference between measured energy and CM energy. VA
LAY

available for polarization calculli

e Energy needs to be monitored routinely.




Preliminary Studies of Beam Polarization in CEPC by Wenhao XIA
Outline

m Background

m Questions&Answers about Beam Polarization

(As a beginner)
1) What is Polarization?
2) Why Polarization?

3) How to...?

m My Work in the Future

® Summary

Summary

Polarized electron/positron beams are needed at CEPC to do beam energy
calibration and polarization-dependent physics experiments.

| have learnt some basic theoretical knowledge about beam polarization.
For example , Thomas-BMT equation, Sokolov-Ternov effect, Froissart-
Stora formula and so on.

I did some simple calculations with parameters of CEPC.
It takes a lot of time to obtain polarization with radiative self-polarization.

Special wiggler magnets can speed up this progress.

My work in the future:

. To insert wigglers into the collider ring to speed up radiative self-

polarization progress for beam energy calibration.

. To overcome/avoid depolarization during acceleration at booster.
. To realize the collision of the longitudinally polarized beams at the IPs.



Beam Polarization in Future Colliders: FCC-ee and eRHIC
by Eliana Gianfelice-Wendt

SChematiC IeW O ne e - ol alaip = =il hain ol Al & ars DL () oo
ummary for eRHIC storage ring

olarization studies for the eRHIC storage ring are going on.

o With conservative errors P, =~ 50% seems within reach:

— for upwards polarized bunches (anti-parallel to the guiding field),
<P >= 80%., over 5 minutes if P(0)=85%;

— for bunches polarized downwards the average polarization drops to 67%: they

4.046

ERA-e tunes)

must be replaced more often.

[ ]

494 BPMY e Luminosity working point requires linear coupling correction. Here the benefits of a |
2x494 co local correction using 46 skew quadrupoles have been shown, but

Magnet — the use of correctors for dispersion and of (fewer?) skew quads for betatron

41 412 414
Optics wi coupling correction is an alternative to be tried;

[ ]

Assum — implementation of a knob for controlling the vertical beam size at IP w/o af- § luminosity

— fecting polarization seems feasible.
arl

vefl ® Comparisons with different codes (Bmad, PTC) are going on.

e Beam-beam effects need to be addressed. |

] e e 1 o |
0 - = p: A}\ I',‘_w - —— ___,//‘

402 404 406 408 41 412 414

=
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JLEIC Electron Beam Polarization by Yuhong Zhang

Design concepts
ke Derb_e"ev Figure-8 e * Figure-8 topology =» Enabled by a green field collider ring design

synchrotron

« Spin precessions in the left & right parts of a figure-8 ring exactly
cancelled =» spin tune is zero

» Does not cross spin resonance during energy ramp
» Spin can be controlled and stabilized by compact spin rotators, no

JLEIC booster and collider rings have adopted a figure-8 shape for better preservation and
control of polarization by taking advantage of a spin transparency mode

lon and electron polarization schemes have been designed.

Spin tracking validated figure-8 based polarzation control schemes for the whole JLEIC complex
Both ion and electron polarizations = 80% can be reached

Spin transparency mode will be studied in RHIC

— Rotate spin to longitudinal in straights using spin rotators

* Universal spin rotator
661, g = 34 — — Fixed orbit, energy independent, optics independent

d eV Tdepol

5 GeV: Tgupgr = 8h, Ly = 37

” / o — | Energy (GeV) 3 5 7 9 12
I ST T Lifetime (hours) 116 9 1.7 05 0.1

i i i i i i i
o 5 o 15 20 25 36 35 40 45 S0 55 61
Tinj ( nA )



ILC Polarized Electron and Positron Sources by Kaoru Yokoya

summary

fni'l'fr'\\’.w\" ar a
.-#'MPW; pected
| * Electron source
Require & K-STF
. * In good shape nm
* Repitition rate . . =
. Numberofbunchs *+ ~90% polarization can be expected =

* Number of particles |

* Need some study on the laser
* Positron (undulator)

* Bunch interval
* Rms bunch length

TDR I?a * Many issues still remain

P>80% * Water-cooled target = radiation-cooled target
* Photo-cat . FC D QWT
) Df"“ lase * Serious design of QWT needed
'SIﬂglE'bU . PthDn dLIl'I"Ip is electron
o *» Must select undulator or e-driven in early 2021

>gef * Report by Positron WG (May 2018)
B + http://edmsdirect.desy.de/item/D00000001165115 X wtormarcs
g the pulse

iy structure
SSSSSS



JLEIC Electron Beam Polarization by Yuhong Zhang

Polarized Electrons for Polarized Positrons (PEPPo) !

- O _:J-( —>_) E.G. Bes§oqov,A.A. Mikhailichenko, EPAC (1996) e PEPPO provides a new Option for po|arized
e—> Y > e (+e) AP Poylitsin, NIM A398 (1997) 395 : .
- positrons in a 10-100 MeV range
E.A. Kuraev, Y.M. Bystritskiy, M. Shatney, L . ..
E Tomasi-Gustafsson, PRC 81 (2010) 055208 Pro: low neutron radiation
S, — Con: low position yield (10-° to 10-3)
P . .. . .
< « Mitigation of low current: Accumulation
—_—> _ — “hot” positrons after conversion: hard to
O accumulate with large phase space distribution
— “cold” electrons before conversion: easy to
Pt accumulate
PEPPo Calorimeter Harmonic [ oo
Experiment RF Kicker
Compact accumulator ring Positron
Solarized w/ 500-turn phase space conV(TIrsmt)_n and
olarize L collection
painting injection Bunch ) N .

management

electron
Injector ~36m
1

| to CEBAF
50Mev. ' &  \ e — = q
50 MeV 2 nc@748.5 MHz 50 MeV ~30 Mever |
4 pC@748.5MHz  g504 polarization 2nC@17 MHz 105 - 103 efficiency | 1PC @ 17 MHz

85% polarization 80% polarization ~ >60% in polarization ~ |_>60% polarization |



Overview of Electron Polarimetry by Dave Gaskell (JLab)

Outline Electron Polarimetry Techniques

» Overview of common electron polarimetry ter  Common techniques for measuring electron heam polarization

— Mott scattering * Mott scattering: € + Z — e, spin-orbit coupling of electron spin with (large Z) target nucleus
— Mgller scattering — Useful at MeV-scale (injector) energies

Summary e

mhs tar

« Several useful techniques for electron polarimetry
— Compton polarimetry is commonly used in storage rings/colliders
— Maller polarimetry may be possible using jet targets, but likely more R&D is required

+ High precision has been achieved with Compton polarimetry with several devices in different
accelerators

— In general, highest precision has used electron detection for longitudinal polarization
— High precision is possible for transverse Compton polarimeters, but less experience

EIC will require precise measurements of both electron and hadron polarization
— Compton polarimeter design for EIC will draw on experience from earlier devices
= JLEIC (longitudinal) Compton polarimeter design based on successful JLab polarimeters

—eRHIC Compton polarimeter will measure transverse polarization — important experience from HERA
TPOL will prove valuable

E electran P " Iowenerelectmns

detectar
¢
! B
’ l.'.
U Electron

,i\\ tracking detector

/ . ) ey
A A

I
Dipole Photon detector Luminosity
Lager system Manitor

;
L
Seattered alectrons A
F
K

Electron beam




Design of the FCC-ee Beam Polarimeter by Nickolai Muchnoi

» Beam er
precise
~100 ke

» About ¢
frequen

» Itisim|
energy :
asymptc

» Ecm nea

reconst
of the |

o
Polar

» Fast m
energy

» Positivi

» Known
polariz

» Inverse Compton scattering is used for direct beam energy calibration at
low-energy e* colliders: VEPP-4M, BEPC-IT, VEPP-2000.

Excerpts from FCC-ee CDR

Summary

» Detecting both scattered photons & electrons increases the reliability of

beam polarization measurement.

Electron-laser
x\ interaction point

——a

» FCC-ee polarimeter provides ~ 1 % / s accuracy for (| . r

» The beam ener
neither the B-fiel

spectrometer option does not require mandatory

measurement nor the BPMs data:

» statistical precision AE/E ~ 100 ppm / 10 sec;

» systematic effects estimation requires further studies:

yet no limitations;

» test of the approach does not require high beam energy and should be :
performed with low emittance beam at low energy. |

3

;M keV

» Polarimeter allows to measure beam sizes & positions.

» Extend the latter experience for high energy colliders?

oUU
500 —‘
400
300 -~
- 200 -
100
0

-100 -

-200

Z.1 mrad bent electron beam
+/- 35 mm vacuum tube

5.6 mrad bent edge electrons
Y - beam

€ 1£0.60 keV

b .‘-n"o-:iinq..,_--
e

1b: 0.412)
2 +0.48 keV
S, = 2.30 keV

73 1+ 0.07 MeV

6300
E, [keV]

straight section

2.33 eV, k= 1.63.

z, [m]

Blue bars - 2D silicon pixel detectors for scattered electrons & photons.
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Code Development and Polarized Beam Simulation Studies

ZGOUBI

Hadron polarization at RHIC complex

Electron polarization in e RHIC d(mv) T
—g— =qV XDb
Hadron polarization in eRHIC dt 1
) dS _4a¢g. -
JLEIC EIC e L S % &

Cornell-BNL CBETA FFAG ERL (ﬁ

¢ LZgoubi was first written in 1972... 457 yrs !

¢ Installed in sourceforge in 2007

support the eRHIC polarized *He project

d "'h Spin Tracking Helium-3 through 12-

w = 4787 mm mrad measured at KIWO0G
a, T

From Runld: normalized 95% emittance,
.0 o 2ABmm

w="h mm mrad used for the smulatoes, o,
a = 20541070

= (1 +~G)b+ G(1 —~)

9y Francois Meot (BNL)

Numerical integrator

Absolute Polarimeter

(HT jer) \‘. L

RHIC pC Polarimeters

@a Full Siberian
Snakes Full Siberian
Snakes
= .
0N NI
PHENIX

Spin Rotators Spin Flipper

Tune Jumps

Quadrupoles Spin Rotators

/ OPPIS, H T Source

6,)

LINAC BOOSTER Warm Partial Siberian Snake

F Polari Vel
200 MeV Polarimeter - AGS pC Polarimeter

Cold Partial Siberian Snake

2 Hadron polarization at RHIC complex

- include p, He3
- start at the booster, and include AGS, AtR, RHI

-_‘H-l 3He source N

Figue wnl

L= ' Booster simulations

» Used over past 10 yrs to study polarization in RHIC.
* A benchmarking example: crossing the strong snake
resonance Gy =393 + Q

Zgoubl

tracking (Nov. 2011)

-0.
-0.
-0.

A 0.
=

0
Vv -0.

-0.

T T T T T
1000 prtels

A 2000 pricls
A Model -----+ |

\ "
\ P PN -
VIV N e~

| - 1 L _

= R = T B L
T

420 425 430 435 440 443

G.gamma

Electron polarization in e RHIC
Polarization lifetime in eRHIC storage ring
e Spins tracked over 240 damping
times in eRHIC, 18 GeV

e B -k ] (I




Re-evaluation of Spin-Orbit Dynamics of Polarized e+e? Beams in High Energy
Circular Accelerators and Storage Rings: Bloch equation approach by Klaus

Heinemann (Univ. New Mexico)
@ Fokker-Planck equation for phase space density:

O fiab = Lian(t, 7, p) flab (

@ Topic: Is polarization possible in high energy electron storage rings —_—
Liouville & damping & diffusion

like proposed Circular Electron Positron Collider (CEPC) and Future

Circular Collider (FCC-ee)? @ Bloch equation for polarization density:
@ Review standard approach: Derbenev-Kondratenko formulas B fiab = Liab (t, 7, p)fiab 4 i (£, 7, D) X iab
@ Derbenev-Kondratenko formulas rely, in part, on plausible Liouville & damping & diffusion T_BMT — terms
assumptions grounded in deep physical intuition 2 + Ghab(t, 7, P)fiab + Fiab(t, 7 p) fiab (

@ Question: Do Derbenev-Kondratenko formulas, even with correction
terms, tell full story?

spin—flip terms

@ Description of electron bunch by spin-1/2 Wigner function py,y,
o Alternative approach: Bloch equation for polarization density 3

1 - -
@ Bloch equation allows for assessment of Derbenev-Kondratenko prab(t, T, p) = §[f'ab(t‘r‘p)f'3><2 +3  fiab (8,7, p)]
formulas @ Bloch equation is PDE describing linear driven oscillator with
@ Numerical approach to Bloch equation suggests Method of damping and diffusion
Averaging for getting effective Bloch equation @ Task: Find equilibrium polarization vector ﬁab(rx;)
@ Hope: Bloch equation teaches us domain of applicability of @ Bloch equation generalizes Baier-Katkov-Strakhovenko ODE to
Derbenev-Kondratenko formulas include phase-space effects ®

Derb Kond Koof | Future work
erbenev-nondratenko-tormula @ Further development of Bloch equation approach (numerical and

Ppk(0) = Ppk(+oo)(1 —e™ -0/ IR + Ppk(0)e —0/TpK theoretical)

. @ Comparing the Bloch equation approach with
Ppk (+00) = ao_l Derbenev-Kondratenko-formula approach
DK

9 Lion 2 ® Better understanding/modification of
n |«

-1 5 B'TE-P:r'a}i C\‘ /Hﬁ 1 < 2 _ ) ‘ >
Thr = _ df 1—Z(fi-B)2+ = Derbenev-Kondratenko-formula approach
'DK 8 m 4m? |p(6)]3 9(n B) PP

© Study of correction term to T]Sé in terms of RBE
@ Replacing the invariant spin field 77 by “radiative invariant spin fiels

2 -
replaced by ‘%

-1 _ rggﬂdh C 3 = a7
o To = —m a2 D " df {H”E <b |:H-— 4':3;'}>9

=1 A
P ‘ dzg



Personal Impression and Prospect

There is a theoretical framework of beam polarization and good understanding

There were successful experiences in dealing beam polarizations in collider
— Lepton beam polarization in HERA
— Hadron beam polarization in RHIC

Very challenging beam polarization requirements in future colliders
— ~10% polarization for both e- and e+ beams in z (and even W) energy
— >70% polarization for both electron and proton/light ion beams in EIC

More challenges in delivering physics: spin flip
Technical systems: polarized sources (ILAC, Super Tau-Charm, EIC)
Technical system: polarimetry

There are good simulation tools, still need improvements (physics and
computing)

A small community, international collaboration should be very helpful
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